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Abstract
We employ a time-dependent mean-field-hydrodynamic model to study the
generation of bright solitons in a degenerate fermion–fermion mixture in a
cigar-shaped geometry using variational and numerical methods. Due to
a strong Pauli-blocking repulsion among identical spin-polarized fermions
at short distances there cannot be bright solitons for repulsive interspecies
interactions. Employing a linear stability analysis we demonstrate the
formation of stable solitons due to modulational instability of a constant-
amplitude solution of the model equations for a sufficiently attractive
interspecies interaction. We perform a numerical stability analysis of these
solitons and also demonstrate the formation of soliton trains by jumping the
effective interspecies interaction from repulsive to attractive. These fermionic
solitons can be formed and studied in laboratory with present technology.

PACS numbers: 03.75.Ss, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

After experimental observation and the study of bright solitons in Bose–Einstein condensates
(BEC) [1–3], recent observations [4–7] and experimental [8–10] and theoretical [11–14]
studies of a degenerate Fermi gas (DFG) by sympathetic cooling in the presence of a second
boson or fermion component suggest the possibility of soliton formation [15] in a degenerate
fermion–fermion mixture (DFFM). Apart from the observation of a DFG in the degenerate
boson–fermion mixtures (DBFM) 6,7Li [6], 23Na–6Li [7] and 87Rb–40K [8, 9], there have been
studies of the following spin-polarized DFFM 40K–40K [4] and 6Li–6Li [5].

The dimensionless one-dimensional nonlinear Schrödinger (NLS) equation in the
attractive (self-focussing) case [16]
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+
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2

∂2φ

∂y2
+ |φ|2φ = 0 (1)

sustains the following bright soliton [16]:

φ(y, t) = a sech[a(y − vt)] exp(ivy − i(v2 − a2)t/2 + iσ). (2)

The parameter a represents the amplitude as well as pulse width, v the velocity, and σ is a
phase constant. These bright solitons are possible only in one dimension. In two and three
dimensions they are allowed in the presence of a transverse trap [1, 15], or in the presence of
an oscillating nonlinearity [17]. Apart from bright solitons in the attractive case, gap solitons
are possible in the repulsive (self-defocussing) case in the presence of a periodic potential
[18].

Bright solitons in a BEC are formed due to a nonlinear atomic attraction [1, 2]. As the
interaction in a pure DFG at short distances is repulsive due to strong Pauli blocking, there
cannot be bright solitons in a DFG. However, bright solitons can be formed [19, 20] in a
DBFM in the presence of a sufficiently strong boson–fermion attraction which can overcome
the Pauli repulsion among identical fermions. Bright solitons can also be formed in a binary
mixture of repulsive bosons supported by interspecies attraction [21].

We demonstrate the formation of stable fermionic bright solitons in a DFFM for a
sufficiently attractive interspecies interaction. In a DFFM, the coupled system can lower
its energy by forming high density regions, the bright solitons, when the attraction between
the two types of fermions is large enough to overcome the Pauli repulsion. We use a coupled
time-dependent mean-field-hydrodynamic model for a DFFM and consider the formation of
axially-free localized bright solitons in a quasi-one-dimensional cigar-shaped geometry using
numerical and variational solutions. The present model is inspired by the success of a similar
model used recently in the investigation of collapse [14, 22] and bright [20] and dark [23]
solitons in a DBFM, and black solitons [24] and mixing-demixing [25] in a DFFM.

We study the condition of modulational instability of a constant-amplitude solution of
the present model under a plane-wave perturbation and demonstrate the possibility of the
formation of bright solitons by a linear stability analysis. We find that for a sufficiently strong
interspecies interaction, under the plane-wave perturbation the constant-amplitude solution
becomes unstable and localized solitonic solutions may appear. We present a numerical
stability analysis of these bright solitons by introducing different small perturbations when the
solitons undergo stable and sustained breathing oscillation.

We also consider and study the formation of a soliton train in a DFFM by a large
sudden jump in the interspecies fermion–fermion scattering length realized by manipulating
a background magnetic field near a Feshbach resonance, experimentally observed in two
hyperfine states of the following spin-polarized DFFMs: 6Li–6Li and 40K–40K [26]. This
procedure effectively and rapidly turns a repulsive DFFM to a highly attractive one and
generates bright solitons. An experimental realization of bright solitons in a DFFM could be
tried in two hyperfine states in samples such as 6Li–6Li or 40K–40K using a Feshbach resonance.
However, there is already experimental evidence [27] and theoretical conjecture [28] that the
maximum attractive force, which can be created by a Feshbach resonance in fermionic atoms
in two hyperfine states is limited by quantum-mechanical constraints of unitarity. Although
there is a limit to the creation of attraction in a two-component spin-polarized DFFM in two
hyperfine states, there is no such limit in a multi-component spin-polarized DFFM [29] or
a DFFM composed of atoms of distinct mass [30]. So, if bright solitons and soliton trains
cannot be efficiently created in a two-component DFFM in two hyperfine states, a better and
more efficient DFFM for the creation of solitons could be the mixture of fermionic atoms
of distinct mass, where one can avoid the problem of a possible suppression of interspecies
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attraction. One such system, among many others, could be the mixture of spin-polarized
6Li–40K mixture: both 6Li [5, 31] and 40K [4] have been trapped and studied in laboratory.
The formation of bright solitons in a DFFM by turning the effective interspecies interaction
among spin-polarized fermions from repulsion to strong attraction seems within the reach of
present experimental possibilities.

Here we shall be interested in the formation of bright solitons in a spin-polarized DFFM
of different fermionic atoms in the presence of strong interspices attraction and we shall
ignore the possibility of the formation of a Bardeen–Cooper–Schreiffer (BCS) condensate
[32] through Cooper pairing. A BCS condensate is usually formed in the presence of a
weak attraction among identical fermions with fermion pairs in the singlet (spin parallel)
state. The formation of a BCS condensate should not be favoured in a spin-polarized (spin
antiparallel) two-component DFFM with strong attraction among the different types of atoms,
as a strong interspecies attraction is not the domain of BCS condensation. By choosing a
strong interspecies attraction our study stays in the BEC region of the BCS-Bose crossover
problem [33] strongly favouring molecule formation. The solitons once formed will decay via
molecule formation of two different types of fermionic atoms [34] as in the case of bosonic
solitons. Nevertheless, such molecule formation is a slow process and can be accounted for by
a three-body recombination term as introduced in a previous study of collapse in a DFFM [35].
The molecule formation will eventually destroy the solitons in the DFFM, albeit, at a slow
rate. The same is true in the formation of soliton and soliton train in an attractive BEC, where
the essential features of the dynamics have been well explained within the mean-field Gross–
Pitaevskii model by neglecting molecule formation [36]. A subsequent study including the
effect of molecule formation [37] has not essentially changed the conclusions of [36]. Hence
this pioneering study on the formation of soliton and soliton trains in a DFFM of different
atoms using mean-field hydrodynamic equations with the neglect of molecule formation is
expected to explain the essential features of the dynamics. However, it would be of interest to
include the effect of molecule formation on the DFFM solitons in a future study.

In section 2, we present our mean-field-hydrodynamic model and its reduction to a quasi-
one-dimensional form in a cigar-shaped geometry. In section 3, we show that bright solitons
can appear in this model through modulational instability of a constant amplitude solution. In
section 4, we perform a variational analysis of the mean-field equations. Numerical results for
isolated bright solitons are presented in section 5 and are compared with variational results.
Then we study the generation of a train of solitons by modulational instability. Finally, we
present a summary in section 6.

2. Nonlinear model

We use a simplified mean-field-hydrodynamic Lagrangian for a DFG used successfully to
study a DBFM [14, 20, 23]. To develop a set of time-dependent mean-field-hydrodynamic
equations for the interacting DFFM, we use the following Lagrangian density [14, 20]:

L = g12n1n2 +
2∑

j=1

i

2
h̄

[
ψj

∂ψ∗
j

∂t
− ψ∗

j

∂ψj

∂t

]
+

2∑
j=1

(
h̄2|∇rψj |2

6mj

+ Vj (r)nj +
3

5
Ajn

5/3
j

)
, (3)

where j = 1, 2 represents the two components, ψj the probability amplitude, nj = |ψj |2
the probability density, ∗ denotes complex conjugate, mj the mass, Aj = h̄2(6π2)2/3/(2mi),

the interspecies coupling g12 = 2πh̄2a12/mR with mR = m1m2/(m1 + m2) the reduced
mass, and a12 the interspecies fermion–fermion scattering length. The number of fermionic
atoms Nj is given by

∫
dr nj (r) = Nj . The trap potential with axial symmetry is taken as
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Vj (r) = 1
2 3mjω

2(ρ2 + ν2z2), where ω and νω are the angular frequencies in the radial (ρ)
and axial (z) directions with ν the anisotropy. The ν → 0 limit corresponds to a cigar-shaped
geometry and allows a reduction of the three-dimensional equations to a quasi-one-dimensional
form appropriate for freely moving solitons. The interaction between identical intra-species
fermions in spin-polarized state is highly suppressed due to Pauli blocking terms 3Ajn

5/3
j

/
5

and has been neglected in (3). The kinetic energy terms h̄2|∇rψj |2/(6mj) in (3) contribute
little to this problem compared to the dominating Pauli-blocking terms. However, its inclusion
leads to an analytic solution for the probability density everywhere [20].

With the Lagrangian density (3), the following Euler–Lagrange equations:

d

dt

∂L
∂

∂ψ∗
j

∂t

+
3∑

k=1

d

dxk

∂L
∂

∂ψ∗
j

∂xk

= ∂L
∂ψ∗

j

, (4)

with xk, k = 1, 2, 3, being the three space components, become[
ih̄

∂

∂t
+

h̄2∇2
r

6mj

− Vj − Ajn
2/3
j − g12nk

]
ψj = 0, (5)

where j �= k = 1, 2. This is a time-dependent version of a similar time-independent
hydrodynamic model for fermions [13]. For large nj , both lead to [13, 14] the Thomas–
Fermi result [3] nj = [(µj − Vj )/Aj ]3/2 with µj the chemical potential. They yield identical
results for time-independent stationary states. However, the present time-dependent model
can be used in the study of nonequilibrium dynamics, as in the study of soliton trains.

For ν = 0, (5) can be reduced to an effective one-dimensional form by considering
solutions of the type ψj(r, t) = √

Njφj (z, t)ψ
(0)
j (ρ) where

∣∣ψ(0)
j (ρ)

∣∣2 ≡ mω

πh̄
exp

(
−mωρ2

h̄

)
, (6)

with m = 3mj corresponds to the ground state wavefunction in the radial trap alone in the
absence of nonlinear interactions. Here to have an algebraic simplification we have taken the
masses of two types of fermions to be equal (m1 = m2). These wavefunctions satisfy

− h̄2

2m
∇2

ρψ
(0)
j +

1

2
mω2ρ2ψ

(0)
j = h̄ωψ

(0)
j , (7)

with normalization 2π
∫ ∞

0

∣∣ψ(0)
j (ρ)

∣∣2
ρ dρ = 1. Now the dynamics is carried by φj (z, t) and

the radial dependence is frozen in the ground state ψ
(0)
j (ρ). In the quasi-one-dimensional

cigar-shaped geometry the linear fermionic probability densities are given by |φj (z, t)|2.
Averaging over the radial mode ψ

(0)
i (ρ), i.e., multiplying (5) by ψ

(0)∗
i (ρ) and integrating

over ρ, we obtain the following one-dimensional dynamical equations [25]:[
ih̄

∂

∂t
+

h̄2

2m

∂2

∂z2
− Fjj |φj |4/3 − Fjk|φk|2

]
φj (z, t) = 0, (8)

where

Fjk = g12Nk

∫ ∞
0

∣∣ψ(0)
j

∣∣2∣∣ψ(0)
k

∣∣2
ρ dρ∫ ∞

0

∣∣ψ(0)
j

∣∣2
ρ dρ

= g12
Nkmω

2πh̄
,

Fjj = AjN
2/3
j

∫ ∞
0

∣∣ψ(0)
j

∣∣2+4/3
ρ dρ∫ ∞

0

∣∣ψ(0)
j

∣∣2
ρ dρ

= 3Aj

5

[
Njmω

πh̄

]2/3

.
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In (8) the normalization is given by
∫ ∞
−∞ |φj (z, t)|2 dz = 1. In these equations we have set

the anisotropy parameter ν = 0 to remove the axial trap and thus to generate axially-free
quasi-one-dimensional solitons.

To reduce three-dimensional equations (8) to a dimensionless form, following [20], we
consider variables τ = tω/2, y = z/l, ϕi = √

lφi , with l = √
h̄/(ωm), while (8) becomes[

i
∂

∂τ
+

∂2

∂y2
− Njj |ϕj |4/3 + Njk|ϕk|2

]
ϕj (y, τ ) = 0, (9)

where Njj = 9(6πNj)
2/3/5, and Njk = 12|a12|Nk/l. Here we employ a negative a12

corresponding to attraction, and
∫ ∞
−∞ |ϕj (y, τ )|2 dy = 1. In (9) a sufficiently strong attractive

fermion–fermion coupling Njk|ϕk|2 (j �= k) can overcome the Pauli repulsion Njj |ϕj |4/3 and
form bright solitons.

For the usual Gross–Pitaevskii with the cubic nonlinearity, the reduction of the full three-
dimensional equation to its one-dimensional counterpart was performed, in different forms, by
many authors [38]. The nonlinearity with 4/3 power in (9) was obtained starting from a similar
nonlinearity in a three-dimensional DFG. A strict one-dimensional (two-dimensional) DFG
will give rise to a quintic (cubic) nonlinearity. Whatever be the nonlinearity in the intraspecies
fermions, bright fermionic solitons will be generated, provided that the interspecies attraction
is strong enough to overcome the intraspecies repulsion due to Pauli blocking. However, in
this paper we shall consider only the Pauli-blocking nonlinearity with the 4/3 power as in (9).

The two coupled equations (9) could be simplified for N1 = N2 = N , while ϕ1 = ϕ2 ≡ ϕ,
and these equations reduce to the following single equation,[

i
∂

∂τ
+

∂2

∂y2
− β|ϕ|4/3 + γ |ϕ|2

]
ϕ(y, τ ) = 0, (10)

where β = N11 = N22 and γ = N12 = N21. Equation (10) maintains the essential features of
(9), e.g., a quadratic nonlinear attraction and a Pauli blocking repulsion. The one-dimensional
equation (10) is quite similar in structure to the NLS equation (1) apart from the Pauli-blocking
repulsive term β. For a small β and large γ the solitons of (1) survive in (10). However, they
disappear in the opposite limit of large β and small γ .

3. Modulational instability

3.1. Symmetric case (N1 = N2)

We find that (10) allows a constant-amplitude solution which exhibits modulational instability
leading to a modulation of the solution. We perform a stability analysis of this solution and
study the possibility of generation of solitons by modulational instability in the symmetric
case. We consider the constant-amplitude solution [16]

ϕ0 = A0 exp(iδ) ≡ A0 exp
[
i
(
γA2

0τ − βA
4/3
0 τ

)]
(11)

of (10), where A0 is the constant amplitude and δ a phase. The time evolution of solution
(11) maintains the constant amplitude A0 but acquires an amplitude-dependent phase. Now
we study if this solution is stable against small perturbations by performing a linear stability
analysis.

We consider a small perturbation of the constant-amplitude solution (11) given by:

ϕ = (A0 + A) exp(iδ), (12)
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where A = A(y, τ) is the small perturbation. Substituting the perturbed solution (12) into
(10), and for small perturbations retaining only the linear terms into A we get

i
∂A

∂τ
+

∂2A

∂y2
− 2

3
βA

4/3
0 (A + A∗) + γA2

0(A + A∗) = 0. (13)

We consider the complex plane-wave perturbation

A(y, τ) = A1 cos(Kτ − �y) + iA2 sin(Kτ − �y) (14)

in (13), where A1 and A2 are the amplitudes of the real and imaginary parts, respectively, and
K is a frequency parameter and � a wave number. Then separating the real and imaginary
parts we get

−A1K = A2�
2, (15)

−A2K = A1�
2 − 2γA2

0A1 + 4
3βA

4/3
0 A1, (16)

and eliminating A1 and A2 we obtain the dispersion relation

K = ±�
[
�2 − (

2γA2
0 − 4

3βA
4/3
0

)]1/2
. (17)

The constant-amplitude solution (11) is stable if perturbations at any wave number � do not
grow with time. This is true as long as frequency K is real. From (17) we find that K remains
real for any � provided that 2γA2

0 < 4βA
4/3
0

/
3 or γA

2/3
0 < 2β/3. However, K can become

imaginary for γA
2/3
0 > 2β/3 and the plane-wave perturbations can grow exponentially with

time τ . This is the domain of modulational instability of a constant-intensity solution [16].
The perturbation then grows exponentially with the intensity given by the growth rate or the
modulational instability gain g(�) defined by

g(�) ≡ 2 Im(K) = 2|�|[2γA2
0 − 4

3βA
4/3
0 − �2

]1/2
, (18)

where Im denotes the imaginary part. The presence of modulational instability is closely
connected with the appearance of a bright soliton [16]. Localized bright solitons are possible
only when the constant-amplitude solution is unstable.

3.2. Asymmetric case (N1 �= N2)

Now we consider the possibility of modulational instability of a similar constant-intensity
solution in coupled equations (9). We consider the constant-amplitude solutions

ϕj0 = Aj0 exp(iδj ) ≡ Aj0 exp
[
iτ

(
NjkA

2
j0 − NjjA

4/3
j0

)]
,

of (9), where Aj0 is the amplitude and δj a phase for component j . The constant-amplitude
solution develops an amplitude-dependent phase on time evolution. We consider a small
perturbation Aj exp(iδj ) to these solutions via

ϕj = (Aj0 + Aj) exp(iδj ), (19)

where Aj = Aj(y, τ ). Substituting this perturbed solution into (9), and for small perturbations
retaining only the linear terms in Aj we get

i
∂Aj

∂τ
+

∂2Aj

∂y2
− 2

3
NjjA

4/3
j0 (Aj + A∗

j ) + NjkAk0Aj0(Ak + A∗
k) = 0, j �= k. (20)

We consider the complex plane-wave perturbation

Aj(y, τ ) = Aj1 cos(Kτ − �y) + iAj2 sin(Kτ − �y) (21)
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in (20) for j = 1, 2, where Aj1 and Aj2 are the amplitudes for the real and imaginary parts,
respectively, and K and � are frequency and wave numbers. Then separating the real and
imaginary parts we get

−A11K = A12�
2 (22)

−A12K = A11�
2 − 2N12A10A20A21 + 4

3N11A
4/3
10 A11, (23)

for j = 1, and

−A21K = A22�
2 (24)

−A22K = A21�
2 − 2N21A10A20A11 + 4

3N22A
4/3
20 A21, (25)

for j = 2. Eliminating A12 between (22) and (23) we obtain

A11
[
K2 − �2

(
�2 + 4N11A

4/3
10

] = 2A21N12A10A20�
2, (26)

and eliminating A22 between (24) and (25) we obtain

A21
[
K2 − �2

(
�2 + 4N22A

4/3
20

] = 2A11N21A10A20�
2. (27)

Eliminating A11 and A21 from (26) and (27), finally, we obtain the following dispersion
relation:

K2 = ±�
[(

�2 + 2
3N11A

4/3
10 + 2

3N22A
4/3
20

)
± {

4
9

(
N11A

4/3
10 − N22A

4/3
20

)2
+ 4N12N21A

2
10A

2
20

}1/2]1/2
. (28)

For stability of the plane-wave perturbation, K has to be real. For any � this happens for(
N11A

4/3
10 + N22A

4/3
20

)2
>

(
N11A

4/3
10 − N22A

4/3
20

)2
+ 9N12N21A

2
10A

2
20,

or for N12N21A
2/3
10 A

2/3
20 < 4N11N22/9. However, for N12N21A

2/3
10 A

2/3
20 > 4N11N22/9 [39], K

can become imaginary and the plane-wave perturbation can grow exponentially with time.
This is the domain of modulational instability of a constant-intensity solution signalling the
possibility of coupled fermionic bright soliton to appear. In the symmetric case N1 = N2 and
A10 = A20 = A0, consequently, N11 = N22 = β and N12 = N21 = γ and we recover the
condition of modulational instability γA

2/3
0 > 2β/3 derived in section 3.1.

4. Variational analysis

4.1. Symmetric case (N1 = N2)

Next we present a variational analysis of (10) based on the Gaussian trial wavefunction [40]

ϕv(y, τ ) = A exp

[
− y2

2R2(τ )
+

i

2
b(τ)y2 + ic(τ )

]
, (29)

where A is the amplitude, R is the width, b the chirp and c the phase. The Lagrangian density
for (10) is the one-term version of (3), e.g.,

L = i

2
h̄

[
ϕ

∂ϕ∗

∂t
− ϕ∗ ∂ϕ

∂t

]
+

∣∣∣∣∂ϕ

∂y

∣∣∣∣
2

− 1

2
γ n2 +

3

5
βn5/3,

which is evaluated with this trial function and the effective Lagrangian L = ∫ ∞
−∞ L(ϕv) dy

becomes

L = A2R
√

π

2

(
6
√

3

5
√

5
βA4/3 + 2ċ − γ√

2
A2 +

R2ḃ

2
+

1

R2
+ b2R2

)
, (30)
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where the overhead dot denotes time derivative. The variational Lagrange equations

d

dt

∂L

∂q̇
= ∂L

∂q
, (31)

where q stands for c,A,R and b can then be written as

A2R = 1√
π

= constant, (32)

ḃ = − 2

R4
− 2b2 + 2

√
2γ

A2

R2
− 4

√
3√
5
β

A4/3

R2
− 4ċ

R2
, (33)

3ḃ = 2

R4
− 6b2 +

√
2γ

A2

R2
− 12

5

√
3√
5
β

A4/3

R2
− 4ċ

R2
, (34)

Ṙ = 2Rb. (35)

The constant in (32) is fixed by the normalization condition. Eliminating ċ from (33) and (34)
we obtain

ḃ = 2

R4
− 2b2 − 1√

2
γ

A2

R2
+

4

5

√
3√
5
β

A4/3

R2
. (36)

The use of (32), (35) and (36) leads to the following differential equation for the width R:

d2R

dτ 2
=

(
4

R3
− γ

R2

√
2

π
+

1

R5/3

8β
√

3

5π1/3
√

5

)
(37)

= − d

dR

[
2

R2
− γ

R

√
2

π
+

1

R2/3

12β
√

3

5π1/3
√

5

]
. (38)

The quantity in the square bracket is the effective potential of the equation of motion. Small
oscillation around a stable configuration is possible when there is a minimum in this potential.
The variational result for width R follows by setting the right-hand side of (37) to zero
corresponding to a minimum in this effective potential, from which the variational profile for
the soliton can be obtained [40].

4.2. Asymmetric case (N1 �= N2)

The above variational analysis can be extended to the asymmetric case. However, the algebra
becomes quite involved if we take a general variational trial wavefunction with chirp and phase
parameters. As we are interested mostly in the density profiles, we consider the following
normalized Gaussian trial wavefunction for fermion component j of (9):

ϕvj =
√

1

Rj(τ)
√

π
exp

[
− y2

2R2
j (τ )

]
, j = 1, 2. (39)

Using essentially the Lagrangian density (3) in this case we obtain the following effective
Lagrangian,

L = − 1√
π

NjkNj√
R2

1 + R2
2

+
2∑

j=1

Nj

2

(
6
√

3

5
√

5π1/3

Njj

R
2/3
j

+
1

R2
j

)
,
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with j �= k = 1, 2. The variational Lagrange equations (31) for R1 and R2 now become

4

R3
j

− 4Njk√
π

Rj(
R2

1 + R2
2

)3/2 +
8
√

3

5
√

5π1/3

Njj

R
5/3
j

= 0. (40)

Equations (40) can be solved for variational widths Rj and consequently the variational profile
of the wavefunctions obtained from (39). When N1 = N2, in (40) Njj = β, Njk = Nkj = γ

and R1 = R2 = R; and in this case (40) yields the same variational widths as from the result
obtained in the symmetric case in section 4.1 given by (37), e.g.,

4

R3
− γ

R2

√
2

π
+

1

R5/3

8β
√

3

5π1/3
√

5
= 0. (41)

5. Numerical results

We solve (9) for bright solitons numerically using a time-iteration method based on the
Crank–Nicholson discretization scheme [41]. We discretize the coupled partial differential
equations (9) using time step 0.0002 and space step 0.015 in the domain −8 < y < 8.
The second derivative in y is discretized by a three-point finite-difference rule and the
first derivative in τ by a two-point finite-difference rule. We perform a time evolution of
(9) introducing a harmonic oscillator potential y2 in it and setting the nonlinear terms to
zero, and starting with the eigenfunction of the harmonic oscillator problem: ϕi(y, τ ) =
π−1/4 exp(−y2/2) exp(−iτ). The extra harmonic oscillator potential, set equal to zero in the
end, only aids in starting the time evolution with an exact analytic form. With this initial
solution we perform time evolution of (9). During the time evolution the nonlinear terms are
switched on slowly and the harmonic oscillator potential is switched off slowly and the time
evolution continued to obtain the final converged solutions. In addition to solving the coupled
equations (9), we also solved the single equation (10) in the symmetric case: N1 = N2. For
given values of N1 and N2, solitons can be obtained for |a12| above a certain value. In the
coupled-channel case solitons are easily obtained for a smaller |a12| when N1 and N2 are not
very different from each other.

In our numerical study we take l = 1 µm and consider a DFFM consisting of two electronic
states of 40K atoms. This corresponds to a radial trap of frequency ω = h̄/(l2m) ≈ 2π×83 Hz.
Consequently, the unit of time is 2/ω ≈ 4 ms. For another fermionic atom the ω value gets
changed accordingly for l = 1 µm.

5.1. Single soliton

From a solution of coupled equations (9) we find that these equations permit solitonic solutions
provided that |a12| is larger than a certain threshold value consistent with the analysis of
section 3. First we solve (9) for N1 = 40, N2 = 60 and a12 = −300 nm. In this case
no solitons are allowed for a12 = −290 nm. The solitonic solution suddenly appears as
|a12| increases past 290 nm. The solitons in this case are shown in figure 1, where we
also plot the variational solutions of coupled equations (40). In this case the nonlinearity
parameters are N11 ≈ 149, N12 = 216, N21 = 144 and N22 ≈ 195. Substituting these values
of the nonlinearities into (40) and solving we obtain the variational widths R1 ≈ 0.043
and R2 ≈ 0.050. From (29) and (32) we then obtain the variational soliton profiles
|φv1(z)| ≈ 3.62 exp(−270z2) and |φv2(z)| ≈ 3.36 exp(−200z2). From figure 1 we find
that the variational results agree well with the numerical solutions of the coupled equations.
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Figure 1. The solitons |φj (z)| of (9) versus z for N1 = 40, N2 = 60, a12 = −300 nm, while N11 ≈
149, N12 = 216, N21 = 144, and N22 ≈ 195. The corresponding variational solutions φjv(z)

calculated from the coupled equations (40) are also shown.
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Figure 2. The propagation of fermionic solitons (a) |φ1(z, t)| and (b) |φ2(z, t)| of figure 1 versus z

and t for N1 = 40 and N2 = 60. At t = 100 ms (marked by arrows) the bright solitons are set into
small breathing oscillation by suddenly changing the fermion numbers to N1 = 60 and N2 = 40.

In this case we also found the variational result in the symmetric case (N1 = N2 = 50) using
(41), which lies close to the above two variational solutions.

To test the robustness of these solitons we inflicted different perturbations on them and
studied the resultant dynamics numerically. First, after the formation of the solitons of figure 1
with N1 = 40 and N2 = 60 we suddenly changed the particle numbers to N1 = 60 and
N2 = 40 at time t = 100 ms. This corresponds to a sudden change of nonlinearities from
N11 ≈ 149, N12 = 216, N21 = 144 and N22 ≈ 195 to N11 ≈ 195, N12 = 144, N21 = 216 and
N22 ≈ 149. The resultant dynamics is shown in figures 2(a) and (b). Due to the sudden change
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Figure 3. The rms sizes of the solitons |φ1(z, t)| and |φ2(z, t)| of figure 1 versus t. At t = 100 ms
the solitons of figure 1 are set into small breathing oscillation by suddenly changing a12 from
−300 nm to −330 nm.

in nonlinearities, the fermionic bright solitons are set into stable non-periodic small-amplitude
breathing oscillation. This demonstrates the robustness of the solitons.

After the formation of the solitons of figure 1 with N1 = 40 and N2 = 60 we suddenly
changed the interspecies scattering length a12 from −300 nm to −330 nm at time t = 100 ms.
This can be realized by manipulating a background magnetic field near a fermion–fermion
Feshbach resonance [26] This corresponds to a sudden change of nonlinearities from
N11 ≈ 149, N12 = 216, N21 = 144 and N22 ≈ 195 to N11 ≈ 149, N12 ≈ 238, N21 ≈ 158
and N22 ≈ 195. Due to the sudden change in nonlinearities, the fermionic bright solitons
are set into stable non-periodic small-amplitude breathing oscillation. Instead of plotting the
soliton profile in this case we plot the root mean square (rms) size of the solitons in figure 3
which demonstrates the stable nonperiodic breathing oscillation. We also (i) gave a small
displacement between the centres of these solitons and (ii) suddenly changed φ1 → 1.1 × φ1

and φ2 → 1.1 × φ2. In both cases after oscillation and dissipation the solitons continue stable
propagation which shows their robust nature.

5.2. Soliton train

During the time evolution of (9) if the nonlinearities are changed by a small amount or changed
slowly, usually one gets a single stable soliton when the final nonlinearities are appropriate.
However, if the interspecies attraction is increased suddenly by a large amount by jumping a12

from a positive (repulsive) value to a large negative (attractive) value, a soliton train is formed
as in the experiment with BEC [1] because of modulational instability [42].

To illustrate the formation of soliton train in a fermion–fermion mixture in numerical
simulation, we consider the solution of (9) for N1 = N2 = 40 and a12 = −300 nm
with an added axial harmonic trap y2 corresponding to nonlinearities Njj ≈ 149 and
Njk ≈ 144, j �= k = 1, 2. After the formation of the solitons in the axial trap we
suddenly jump the scattering length to −400 nm, corresponding to off-diagonal nonlinearities
Njk = 192, and also switch off the harmonic trap at time t = 0. Although the initial value of
scattering length (a12 = −300 nm) in this case corresponds to an interatomic attraction,
because of strong Pauli-blocking repulsion the effective fermion–fermion interaction is
repulsive in this case. However, the final value of scattering length (a12 = −400 nm)
corresponds to a stronger interatomic attraction which can overcome the Pauli repulsion
so that an effective fermion–fermion attraction emerges in this case which might allow the
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Figure 4. Soliton trains of one, three and five solitons formed for N1 = N2 = 40 upon removing
the harmonic trap y2 and jumping the nonlinearities at t = 0 from Njj ≈ 149, Njk ≈ 144, k �= j =
1, 2 to (a) Njj ≈ 149, Njk ≈ 192, (b) Njj ≈ 149, Njk ≈ 274, and to (c) Njj ≈ 149, Njk ≈ 360,

respectively, corresponding to a jump in scattering length a12 from −300 nm to −400 nm, −570 nm,
and −750 nm. For this purpose we solved the coupled equations (9).

formation of soliton(s). In our numerical simulation we find that this is indeed the case.
Upon a jump of the scattering length to a12 = −400 nm, we find that after some initial noise
and dissipation the time evolution of (9) generates a single stable bright soliton as shown in
figure 4(a).

However, more solitons in the form of a soliton train can be formed for a larger jump in the
scattering length. In figure 4(b), from the same initial state in figure 4(a) we consider a larger
jump of a12 to −570 nm corresponding to off-diagonal nonlinearities Njk ≈ 274. The final
value of scattering length (a12 = −570 nm) in this case corresponds to a stronger interatomic
attraction than considered in figure 4(a) which might allow the formation of soliton trains. This
is verified in numerical simulation. Upon a jump of the scattering length to a12 = −570 nm,
from a12 = −300 nm, we find that after some initial noise and dissipation the time evolution
of (9) generates three slowly receding bright solitons as shown in figure 4(b). More solitons
can be generated when the jump in the scattering length a12 or off-diagonal nonlinearities is
larger.
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In figure 4(c) we show the generation of five receding solitons of each component upon
a sudden jump of the scattering length a12 to −750 nm from the initial state of figure 4(a).
This corresponds to a jump of the off-diagonal nonlinearities to Njk ≈ 360. The formation of
soliton trains from a stable initial state is due to modulational instability [16]. The sudden jump
in the off-diagonal nonlinearities could be effected by a jump in the interspecies scattering
length a12 obtained by manipulating a background magnetic field near a Feshbach resonance
[26].

6. Summary

We used a coupled mean-field-hydrodynamic model for a DFFM to study the formation
of bright solitons and soliton trains in a quasi-one-dimensional geometry by numerical and
variational methods. We find that an attractive interspecies interaction can overcome the Pauli
repulsion and form fermionic bright solitons in a DFFM. This is similar to the formation of
bright solitons in a coupled boson–boson [21] and boson–fermion [19, 20] mixtures supported
by interspecies interaction. We show by a linear stability analysis that when the interspecies
attraction is larger than a threshold value, bright solitons can be formed due to modulational
instability of a constant-amplitude solution of the nonlinear equations describing the DFFM.

The stability of these solitons is demonstrated numerically through their sustained
breathing oscillation initiated by a sudden small perturbation. We also illustrate the creation
of soliton trains upon a sudden large jump in interspecies attraction by manipulating a
background magnetic field near a Feshbach resonance [26] resulting in a sudden jump in
the off-diagonal nonlinearities. This jump transforms an effectively repulsive DFFM into an
effectively attractive one, responsible for the formation of a soliton train due to modulational
instability. Bright solitons and soliton trains have been created experimentally in attractive
BECs in the presence of a radial trap only without any axial trap [1] in a similar fashion by
transforming a repulsive BEC into an attractive one. In view of this, fermionic bright solitons
and trains could be created in laboratory in a DFFM in a quasi-one-dimensional configuration.

Here we used a set of mean-field equations for the DFFM. A proper treatment of a
DFG or DFFM should be done using a fully antisymmetrized many-body Slater determinant
wavefunction [11, 19, 43] as in the case of scattering involving many electrons [44]. However,
in view of the success of a fermionic mean-field model in studies of collapse [14], bright [20]
and dark [23] soliton in a DBFM and of mixing and demixing in a DFFM [25], we do not
believe that the present study on bright solitons in a DFFM to be so peculiar as to have no
general validity.
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